- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lee, Keundong (2)
-
Oh, Hongseok (2)
-
Tchoe, Youngbin (2)
-
Azzazy, Farid (1)
-
Ben-Haim, Sharona (1)
-
Bourhis, Andrew M. (1)
-
Bourhis, Andrew_M (1)
-
Brown, Erik C. (1)
-
Cleary, Daniel R. (1)
-
Cleary, Daniel_R (1)
-
Dayeh, Shadi A. (1)
-
Dayeh, Shadi_A (1)
-
Devor, Anna (1)
-
Galton, Ian (1)
-
Ganji, Mehran (1)
-
Hossain, Lorraine (1)
-
Kılıç, Kıvılcım (1)
-
Lee, Jihwan (1)
-
Lee, Sang_Heon (1)
-
Paulk, Angelique C. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cortex in high resolution Recording brain cortical activity with high spatial and temporal resolution is critical for understanding brain circuitry in physiological and pathological conditions. In this study, Tchoe et al. developed a reconfigurable and scalable thin-film, multithousand-channel neurophysiological recording grids using platinum nanorods, called PtNRGrids, that could record thousands of channels with submillimeter resolution in the rat barrel cortex. In human subjects, PtNRGrids were able to provide high-resolution recordings of large and curvilinear brain areas and to resolve spatiotemporal dynamics of motor and sensory activities. The results suggest that PtNRGrids could be used in the preclinical and clinical setting for high spatial and temporal recording of neural activity.more » « less
-
Lee, Sang_Heon; Thunemann, Martin; Lee, Keundong; Cleary, Daniel_R; Tonsfeldt, Karen_J; Oh, Hongseok; Azzazy, Farid; Tchoe, Youngbin; Bourhis, Andrew_M; Hossain, Lorraine; et al (, Advanced Functional Materials)Abstract The Utah array powers cutting‐edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual‐side lithographic microfabrication processes is exploited to demonstrate a 1024‐channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air‐puff stimuli. Significantly, the 1024‐channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain–machine interfaces.more » « less
An official website of the United States government
